MECHANICS (C) UNIT 2 **TEST PAPER 3**

2.

3.

4.

5.

Take $g = 9.8 \text{ ms}^{-2}$ and give all answers correct to 3 significant figures where necessary. A solid rectangular block, whose cross⁻¹ section measures x cm by 5 cm, x cm is placed gently on a rough plane inclined at 30° to the horizontal, as shown. The coefficient of friction between the block and the plane is 5cm 30⁰ 0.6. Show that the block does not slide down the plane and find the smallest value of x for which the block will not topple. [4] A non⁻¹uniform ladder AB, of length 3a, has its centre of mass at G, where AG = 2a. The ladder rests in limiting equilibrium G with the end B against a smooth vertical wall and the end Aresting on rough horizontal ground. The angle between AB and the horizontal in this position is α , where tan $\alpha = \frac{14}{9}$ Calculate the coefficient of friction between the ladder and the ground. [6] Α A lorry of mass 4200 kg can develop a maximum power of 84 kW. On any road the lorry experiences a non ¹gravitational resisting force which is directly proportional to its speed. When the lorry is travelling at 20 ms⁻¹ the resisting force has magnitude 2400 N. Find the maximum speed of the lorry when it is (i) travelling on a horizontal road, [3] (ii) climbing a hill inclined at an angle α to the horizontal, where sin $\alpha = \frac{1}{7}$. [5] A uniform lamina is in the form of a trapezium *ABCD*, as shown. A AB and DC are perpendicular to BC. AB = 17 cm, BC = 21 cm D and CD = 8 cm. (i) Find the distances of the centre of mass of the lamina from В [6] (a) AB. (b) *BC*. С The lamina is freely suspended from C and rests in equilibrium. (ii) Find the angle between *CD* and the vertical. [2] Two railway trucks, P and Q, of equal mass, are moving towards each other with speeds 4uand 5*u* respectively along a straight stretch of rail which may be modelled as being smooth. They collide and move apart. The coefficient of restitution between P and Q is e. [5] (i) Find, in terms of u and e, the speed of Q after the collision. (ii) Show that $e > \frac{1}{9}$ [2]

Q now hits a fixed buffer and rebounds along the track. P continues to move with the speed that it had immediately after it collided with Q.

- (iii) Prove that it is impossible for a further collision between P and Q to occur. [3]
- A stone, of mass 1.5 kg, is projected **horizontally** with speed 4 ms⁻¹ from a height of 7 m above 6. horizontal ground.
 - (i) Show that the stone travels about 4.78 m horizontally before it hits the ground. [3]
 - (ii) Find the height of the stone above the ground when it has travelled half of this horizontal distance. [3]
 - (iii) Calculate the potential energy lost by the stone as it moves from its point of projection to the ground. [2]
 - (iv) Showing your method clearly, use the principle of conservation of energy to find the speed with which the stone hits the ground. [2]

(v)	State two modelling assumptions that you have made in answering this	s question.	[2]
7.	 Two identical particles P and Q are connected by a light inextensible string passing through a small smooth edged hole in a smooth table, as shown. P moves on the table in a horizontal circle of radius 0.2 m and Q hangs at rest. (i) Calculate the number of revolutions made per minute by P. 	Q b	[4]
	 Q is now also made to move in a horizontal circle of radius 0.2 m below the table. The part of the string between Q and the table makes an angle of 45° with the vertical. (ii) Show that the numbers of revolutions per minute made by P and Q respectively are in the ratio 2⁴ : 1. 		7 [8]
MECHANICS 2 (C) TEST PAPER 3 : ANSWERS AND MARK SCHEME			
1.	tan $30^0 < 0.6$, so block does not slide	B1	
	Topples if $x/5 < \tan 30^{\circ}$, so does not topple if $x \ge 2.89$	M1 A1 A1 4	
2.	Let reactions be <i>R</i> at ground, <i>S</i> at wall		
	$M(A): W(2a \cos \alpha) = S(3a \sin \alpha) \qquad S = 2W \div 3 \tan \alpha = \frac{3}{7}W$	M1 A1 A1	
	Resolve : $R = W$, $\mu R = S$ $\mu = S \div W = \frac{3}{7}$	B1 M1 A1 6	
3.	(i) $2400 = 20k$ $k = 120$ $84000 = v(120v)$ $v = 26.5 \text{ ms}^{-1}$	M1 A1 A1	
	(ii) $P = v(600g + 120v)$ $120v^2 + 5880v - 84000 = 0$	M1 A1 A1	
	$v^2 + 49v - 700 = 0$ $v = (-49 + \sqrt{5201})/2 = 11.6 \text{ ms}^{-1}$	M1 A1 8	
4.	(i) (a) $168(10.5) + 94.5(7) = 262.5 \overline{x}$ $\overline{x} = 9.24$	M1 A1 A1	
	(b) $168(4) + 94.5(11) = 262.5 \overline{y}$ $\overline{y} = 6.52$	M1 A1 A1	
	(ii) $\tan \alpha = (21 - 9.24)/6.52 = 1.804$ $\alpha = 61.0^{\circ}$	M1 A1 8	
5.	(i) Momentum : $4mu - 5mu = mv_P + mv_Q$ $v_P + v_Q = -u$	B1	
	Elasticity : $(v_n - v_0)/(-5u - 4u) = e$ $v_p - v_0 = -9eu$	M1 A1	
	Subt : $2v_0 = -u + 9eu$ $v_0 = \frac{1}{2}(9e - 1)u$	M1 A1	
	(ii) $v_0 > 0$, so $9e > 1$ $e > \frac{1}{9}$	M1 A1	
	(iii) $v_P = -\frac{1}{2}(9e+1)u$ After hitting wall, speed of $Q < \frac{1}{2}(9e-1)u$	M1 A1	
	which is clearly less than $ v_P $, so there is no further collision	A1 10	
6.	(i) $7 = \frac{1}{2}gt^2$ $t^2 = 14 \div 9.8$ $t = 1.195$	M1 A1	
	In 1.195 s, stone travels $4 \times 1.195 = 4.78$ m	Al	
	(ii) When $x = 2.39$, $t = 0.598$ $y = 7 - \frac{1}{2}gt^2 = 5.25$ m	M1 A1 A1	
	(iii) $mgh = 1.5 \times 9.8 \times 7 = 102.9 \text{ J}$	M1 A1	
	(iv) $\frac{1}{2}mv^2 = \frac{1}{2}mu^2 + mgh$ $v = \sqrt{(14g + 16)} = 12.4 \text{ ms}^{-1}$	M1 A1	
	(v) Modelled stone as particle, ignored air resistance, etc.	B1 B1 12	
7.	(i) For $Q: T = mg$ For $P: T = m(0.2)\omega^2$	B1 M1	
	$\omega^2 = g/0.2 = 49$ $\omega = 7$ No. of r.p.m. = $^7/_{2\pi} \times 60 = 66.8$	A1 A1	
	(ii) For $Q: T \sin 45^0 = m(0.2)\omega_1^2$, $T \cos 45^0 = mg$	M1 A1 A1	
	$\tan 45^0 = 0.2 \omega_1^2 / g$ $\omega_1^2 = 49 \tan 45^0 = 49$	M1 A1	
	For $P: T = m(0.2)\omega^2$ But $T = mg\sqrt{2}$ so $\omega^2 = 49\sqrt{2}$	M1 A1	
	$\boldsymbol{\omega}^2: \boldsymbol{\omega}_l^2 = \sqrt{2}: 1 \qquad \qquad \boldsymbol{\omega}: \boldsymbol{\omega}_l = 2^{\frac{1}{4}}: 1$	A1 12	

PMT